An iterative algorithm for the generalized re”exive solutions of the general coupled matrix equations
نویسندگان
چکیده
(including the generalized coupled Sylvester matrix equations as special cases) have numerous applications in control and system theory. In this paper, an iterative algorithm is constructed to solve the general coupled matrix equations and their optimal approximation problem over generalized reflexive matrix solution (X1,X2, . . . ,Xq). When the general coupled matrix equations are consistent over generalized reflexive matrices, the generalized reflexive solution can be determined automatically by the iterative algorithm within finite iterative steps in the absence of round-off errors. The least Frobenius norm generalized reflexive solution of the general coupled matrix equations can be derived when an appropriate initial matrix group is chosen. Furthermore, the unique optimal approximation generalized reflexive solution (̂X1, X̂2, . . . , X̂q) to a given matrix group (X0 1 ,X0 2 , . . . ,X0 q ) in Frobenius norm can be derived by finding the least-norm generalized reflexive solution (̃X* 1, X̃ * 2, . . . , X̃* q) of the corresponding general coupled matrix equations ∑q j=1 Aij̃XjBij = M̃i , i = 1, 2, . . . ,p, where X̃j = Xj – X0 j , M̃i =Mi – ∑q j=1 AijX 0 j Bij . A numerical example is given to illustrate the effectiveness of the proposed iterative algorithm. MSC: 15A18; 15A57; 65F15; 65F20
منابع مشابه
An accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations
In this paper, an accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations is proposed. The convergence analysis of the algorithm is investigated. We show that the proposed algorithm converges to the exact solution for any initial value under certain assumptions. Finally, some numerical examples are given to demons...
متن کاملA new approach for solving the first-order linear matrix differential equations
Abstract. The main contribution of the current paper is to propose a new effective numerical method for solving the first-order linear matrix differential equations. Properties of the Legendre basis operational matrix of integration together with a collocation method are applied to reduce the problem to a coupled linear matrix equations. Afterwards, an iterative algorithm is examined for solvin...
متن کاملAn iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint
In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...
متن کاملOn the numerical solution of generalized Sylvester matrix equations
The global FOM and GMRES algorithms are among the effective methods to solve Sylvester matrix equations. In this paper, we study these algorithms in the case that the coefficient matrices are real symmetric (real symmetric positive definite) and extract two CG-type algorithms for solving generalized Sylvester matrix equations. The proposed methods are iterative projection metho...
متن کاملIterative algorithm for the generalized $(P,Q)$-reflexive solution of a quaternion matrix equation with $j$-conjugate of the unknowns
In the present paper, we propose an iterative algorithm for solving the generalized $(P,Q)$-reflexive solution of the quaternion matrix equation $overset{u}{underset{l=1}{sum}}A_{l}XB_{l}+overset{v} {underset{s=1}{sum}}C_{s}widetilde{X}D_{s}=F$. By this iterative algorithm, the solvability of the problem can be determined automatically. When the matrix equation is consistent over...
متن کامل